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Abstract
The thermodynamic and elastic properties of CaSiO3 perovskite are investigated
at high pressures and temperatures using the plane wave pseudopotential
method within the local density approximation. The athermal elastic moduli of
CaSiO3 perovskite are calculated as a function of pressure up to 200 GPa. The
calculated results are in excellent agreement with available experimental data at
high pressure, and compare favourably with other pseudopotential predictions
over the pressure regime studied. It is also found that the elastic anisotropy
drops rapidly with the increase of pressure initially, and then decreases more
slowly at higher pressures. The thermodynamic properties of CaSiO3 perovskite
are predicted using the quasi-harmonic Debye model for the first time; the
heat capacity and the thermal expansion coefficient agree with the observed
values at ambient conditions and the other calculations at high pressures and
temperatures.

1. Introduction

CaSiO3 perovskite is thought to constitute between 6 and 12 wt% of the lower half of the
Earth’s transition zone and lower mantle [1–3] and is the third most abundant phase after
(Mg, Fe)SiO3 perovskite and magnesiowüstite (Mg, Fe)O, under the assumption that the lower
mantle is pyrolytic. The single-crystal elastic properties of CaSiO3 perovskite are important
for our understanding of processes including brittle failure, flexure, and the propagation of
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elastic waves. However, many of its physical properties are still relatively poorly understood
because it is non-quenchable at ambient conditions. Available results on the elastic properties
are restricted to analogue [4] and theoretical studies [5]. Recently, Shieh et al reported
an in situ strength and elasticity of CaSiO3 perovskite using energy dispersive radial x-ray
diffraction together with lattice strain theory in the pressure range 19–61 GPa [6]. Up to now,
there have not been any measurements reported of the thermodynamic properties of CaSiO3

perovskite at high pressures and temperatures. Moreover, the crystal structure of CaSiO3

perovskite in the mantle is still controversial. Most experimental studies have reported that
CaSiO3 perovskite crystallizes in the cubic structure [7, 8], and first-principles calculations
also supported this observation [9–13]. However, other theoretical calculations favoured a
tetragonal structure [14–17] or even lower symmetry [18–20]. Calculated energy differences
between the proposed phases are sufficiently small that the crystal structure under mantle
conditions is uncertain and may be cubic even if a lower symmetry phase is favoured at 0 K [5].
Therefore, the physical properties of cubic CaSiO3 perovskite may well still be of geophysical
importance.

In this paper, we present first-principles predictions of the elastic properties of cubic
CaSiO3 perovskite at lower mantle pressures using the plane-wave pseudopotential within
the local density approximation. The predicted elastic constants are used to study the elastic
modulus, elastic anisotropy and Cauchy violation. To further investigate this mineral, the quasi-
harmonic Debye model, which takes into account the thermal effects, is adopted to research
the thermal properties of CaSiO3 perovskite, such as the bulk modulus, the heat capacity, the
thermal expansion and the entropy on a first-principles basis. Our results demonstrate that this
method can provide amply reliable predictions for the temperature and pressure dependence of
these quantities.

2. Method

Our computations employ the density functional theory [21, 22] plane-wave pseudopotential
method. The exchange–correlation functional theory is adopted in the local density
approximation [23]. The pseudopotentials for Ca and Si are norm-conserving [24], while an
ultrasoft pseudopotential [25] is used for O. All the pseudopotentials are non-local. The core
radii are 1.06 Å for Ca, 0.95 Å for Si and 0.69 Å for O. The use of an ultrasoft pseudopotential
for oxygen allows us to use a relatively small basis set with plane wave cut-off energy of 550 eV
without any loss of accuracy and with excellent convergence of all properties with respect to
the basis set (the maximum stress is only 0.02 GPa). The Brillouin zone is sampled on an
8 × 8 × 8 Monkhorst–Pack k-point mesh [26], which provides convergence of the total energy
to a value within 5.0 × 10−6 eV/atom. The Kohn–Sham equations are solved iteratively to
self-consistency within 5.0 × 10−7 eV/atom.

The determination of the elastic constants requires the knowledge of the equilibrium
structure at a given pressure. We first fully optimize a single primitive cell of CaSiO3 perovskite
at several pressures. The structural optimization technique uses the Broydon–Fletcher–
Goldfarb–Shanno (BFGS) [27] method with variable cell shape [28]. The elastic constants
are then determined from direct computation of the stresses generated by small deformations
of the equilibrium unit cell. Strains of different amplitudes (−0.003 to 0.003) are used and the
elastic constants are derived from the resulting nonlinear stress–strain relation [29]. The details
of the computational method have been given elsewhere [30].

To investigate the thermodynamic properties of CaSiO3 perovskite, we here apply the
quasi-harmonic Debye model [31], in which the non-equilibrium Gibbs function G∗(V ; P, T )

takes the following form [31]:
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G∗(V ; P, T ) = E(V ) + PV + Avib(�(V ); T ), (1)

where �(V ) is the Debye temperature, and the vibrational term Avib can be written as [32, 33]

Avib(�; T ) = nkT

[
9

8

�

T
+ 3 ln

(
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) − D

(
�

T

)]
, (2)

where D(�/T ) represents the Debye integral, and n is the number of atoms per formula unit.
For an isotropic solid, � is expressed as [32]
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k

[
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√
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, (3)

where M is the molecular mass per formula unit, and KS the adiabatic bulk modulus, which
can be approximated by the static compressibility [31]

KS � K (V ) = V

(
d2 E(V )

dV 2

)
. (4)

Here the Poisson ratio σ is taken as 0.25 [34]; f (σ ) is given in [35, 36]. Therefore, the non-
equilibrium Gibbs function G∗(V ; P, T ) as a function of (V ; P, T ) can be minimized with
respect to volume V as follows:

(
∂G∗(V ; P, T )

∂V

)
P,T

= 0. (5)

By solving equation (5) we obtain the thermal equation of state (EOS). The isothermal bulk
modulus KT , the heat capacity CV , the entropy S and the thermal expansion coefficient α are
given respectively by [36]

KT (P, T ) = V
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, (6)
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α = γ CV

KT V
, (9)

where γ is the Grüneisen parameter [31].

3. Results and discussion

3.1. Static equation of state

The equilibrium volume, bulk modulus, and its pressure derivative are obtained by calculating
the total energy and pressure for different values of the unit cell volume and by fitting the
calculated data to the third-order Birch–Murnaghan (BM) equation of state [37]. The calculated
equilibrium volume (V0), bulk modulus (K0), and their pressure derivatives (K ′

0) are given
in table 1. We find that the calculated equilibrium volume is in good agreement with the
experimental [7, 8, 38–40] and theoretical [5, 11, 14, 16–19] ones. The results concerning the
V0 of Wolf and Jeanloz [41] and Wolf and Bukowinski [42] are higher than the rest. This can be
explained by the fact that they did not use ab initio methods fully and had to use models which
introduced a certain amount of ambiguity. Our predicted equilibrium volume and bulk modulus
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Figure 1. Static equation of state of CaSiO3 perovskite. The present calculated equation of state
is indicated by the solid line, and the experimental data of Mao et al [7], Wang et al [8] and Shim
et al [44] are shown by the cross, open diamond and open square, respectively. The dashed line and
dotted line represent the theoretical values of Karki et al [5] and Jung et al [16], respectively.

Table 1. Unit cell volume, bulk modulus and pressure derivatives of CaSiO3 perovskite from the
calculations and measurements.

EOS third-order BM V0 (Å
3
) K0 (GPa) K ′

0

This work 45.46 240 4.15
Li et al (2006) [17] 45.56 237 3.99
Jung and Oganov (2005) [16] 46.90 219 4.08
Akber-Knutson et al (2002) [18] 45.90 ± 0.02 228 ± 2 4.3 ± 0.1
Magyari-Köpe et al (2002) [19] 45.69 216 4.82
Karki and Crain (1998) [5] 45.35 241 4.14
Chizmeshya et al (1996) [14] 45.62 227 4.29
Wentzcovitch et al (1995) [11] 46.15 254 4.4
Wolf and Bukowinski (1987) [42] 55.74 263 4.13
Wolf and Jeanloz (1985) [41] 56.13 270 3.86
Experiment

Ono et al (2005) [38] 45.38 248 ± 8 4
Shim et al (2002) [39] 45.58 255 ± 5 4
Wang et al (1996) [8] 45.58 ± 0.04 232 ± 8 4.8 ± 0.3
Mao et al (1989) [7] 45.37 ± 0.08 281 ± 4 4
Tamai and Yagi (1989) [40] 45.58 ± 0.07 352 ± 10 4

agree well with the latest theoretical result [17]. The pressure dependence of the volume for
CaSiO3 perovskite calculated with CA-PZ (Ceperley–Alder-Perdew–Zunger) [23, 43] is shown
in figure 1. It is found that the calculated equation of state of CaSiO3 perovskite is in excellent
agreement with the available experimental [7, 8, 44] and theoretical data [5]. However, Jung
and Oganov [16] overestimate the equation of state over a wide pressure range.

3.2. Elastic moduli

The single-crystal elastic properties of mantle minerals are essential for interpreting seismic
wave velocities and their lateral variations. However, the single-crystal elastic constants of
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Figure 2. Pressure dependence of elastic modulus of CaSiO3 perovskite. The solid lines represent
the present results. The calculated values of Karki et al [5] are denoted by the dashed line. The
experimental data are shown by the solid squares [6].

Table 2. Three elastic constants (ci j ), and bulk (K ) and shear (G) moduli in GPa of CaSiO3

perovskite compared with previous results at zero pressure.

Source c11 c12 c44 K G

This work 380 166 225 237 167
Karki and Crain (1998) [5] 367 168 229 234 164
Sherman (1993) [45] 367 222 290 290 208

CaSiO3 perovskite have not yet been measured in experiments at zero pressure. The calculated
athermal elastic constants at zero pressure are shown in table 2 along with the previous
calculations [5, 45]. It is seen that the calculated isotropic bulk modulus is consistent with
the experimental value of 232 GPa [8]. There are not yet experimental data for the elastic
constants and hence for the shear modulus. The periodic Hartree–Fock calculations [45] gave
much higher bulk modulus and hence must have overestimated the shear modulus by several
per cent. However, the calculated isotropic shear modulus is in excellent agreement with the
previous one [5].

The effect of pressure on the elastic constants of CaSiO3 perovskite is large, so theoretical
results at ambient pressure cannot be used to reliably estimate the elasticity at mantle pressures.
Therefore, we predict the high-pressure elastic constants of CaSiO3 perovskite. The bulk
modulus of an isotropic aggregate of cubic crystals is related to the elastic constant K =
(c11+2c12)/3. The pressure dependence of the isotropic aggregate shear modulus G of CaSiO3

perovskite is obtained using the Voigt–Ruses–Hill [46] averaging scheme. In figure 2, the
elastic constants of CaSiO3 perovskite are shown as a function of pressure and compared with
the experimental data [6]. The calculated values of local elastic constants of CaSiO3 perovskite
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Figure 3. Pressure dependence of elastic anisotropy A of CaSiO3 perovskite. The present elastic
anisotropy is indicated by the solid line; the dashed line is the calculated values of Karki et al [5].
The solid squares are the experimental data of Shieh et al [6].

are slightly underestimated in comparison with the experimental values [6], which, however,
are in good agreement with the recently theoretical data [5] over a wide pressure range.

The evolution of elastic anisotropy of the Earth’s deep minerals with increasing pressure
and temperature is of fundamental importance for the understanding of the seismic anisotropy
of the Earth’s interior. The elastic anisotropy of a cubic crystal can be described using
A = S11 − S12 − S44/2 [6]. The pressure dependence of the elastic anisotropy A of CaSiO3

perovskite is shown in figure 3. The elastic anisotropy A drops rapidly with the increase
of pressure initially, and then decreases more slowly at higher pressures. The theoretically
predicted behaviour of CaSiO3 perovskite is consistent with the experimental observations [6]
and the previous calculations [5].

The Cauchy relation c12 − c44 = 2P is valid only when all interatomic forces are central
under static lattice conditions. At zero pressure, c12 − c44 is equal to −59.6 GPa. As shown
in figure 4, the value of Cauchy violation c12 − c44 − 2P for CaSiO3 perovskite is found to
be large and negative and to increase in magnitude with increasing pressure (greater Cauchy
violation). Our results are in good agreement with other ones [5]. The large violations of the
Cauchy relation in CaSiO3 perovskite require an important contribution from noncentral (many-
body) forces. CaSiO3 perovskite cannot be thought of as a material composed of rigid ions.
Band-structure calculations indicate that CaSiO3 remains a wide-gap insulator to pressures well
beyond those in the mantle, and that covalent bonding is not important, so metallic binding or
covalent forces cannot explain the Cauchy violations. The potential-induced breathing model
appears to capture the essential physics, as this simplified model correctly predicts the Cauchy
violation in the alkaline earth oxides [47, 48]. The relevant many-body force arises from a
spherically symmetric breathing of the oxygen ion in response to strain-induced variations in
the Madelung potential at the oxygen site.

3.3. Thermodynamic properties

In figure 5, we have displayed the relations of the bulk modulus of CaSiO3 perovskite as a
function of pressure up to 150 GPa at temperatures T = 300 K, 600 K, 1000 K, 1500 K, and
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Figure 4. Pressure dependence of Cauchy violation of CaSiO3 perovskite. The solid line is the
present work; the dashed line represents the calculated values of Karki et al [5].

Figure 5. Pressure dependence of bulk modulus of CaSiO3 perovskite. The isotherms at 300, 600,
1000, 1500, and 2000 K are represented by the solid lines from top to bottom.

2000 K, respectively. It is found that the relationships between bulk modulus and pressure are
nearly linear at various temperatures of T = 300 K, 600 K, 1000 K, 1500 K, and 2000 K,
respectively. The bulk modulus decreases with increasing temperature at a given pressure and
increases with increasing pressure at a given temperature. These results are due to the fact that
the effect of increasing pressure on the material is the same as that of decreasing temperature
on the material.

The temperature and pressure dependences of the thermal expansion coefficient α of
CaSiO3 perovskite are shown in figure 6. It can be seen from figure 6(a) that the calculated
thermal expansion coefficient α is in accord with the recently measured value [39] at ambient
conditions and the latest calculations [17] at high pressures and temperatures are quite different
from the experimental value [8] at zero pressure and 300 K. The thermal expansion coefficient
α increases with T 3 at low temperatures and gradually approaches a linear increase at high

7
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Figure 6. Temperature (a) and pressure (b) dependence of the thermal expansion coefficient α of
CaSiO3 perovskite. The isobars at 0, 10, 30, 60, 100, and 150 GPa are represented by the solid lines
from top to bottom. The experimental values at ambient conditions of Shim et al [39] and Wang
et al [8] are denoted by the solid squares and solid circle, respectively. The solid diamond, solid
upper triangle and solid lower triangle are for the calculated data of Li et al [17] at high pressures
and temperatures, respectively.

temperatures, and then the increasing trend becomes gentler. The effects of pressure on the
thermal expansion coefficient α are very small at low temperatures; the effects are increasingly
obvious as the temperature increases. As pressure increases, the thermal expansion coefficient
α decreases rapidly and the effects of temperature become less and less pronounced, resulting
in linear high-temperature behaviour. It is noteworthy that the high-temperature dependence
of the thermal expansion coefficient α is not linear at low pressure (0 and 10 GPa); this is an
indication of the inadequacy of the quasi-harmonic approximation at high temperatures and low
pressures. It is shown that the thermal expansion coefficient α converges to a constant value
at high temperatures and pressures. However, it is noted from figure 6(b) that, as the pressure
increases, the thermal expansion coefficient α decreases almost exponentially, and the higher
the temperature is, the faster the thermal expansion coefficient α decreases. This shows that
the impact of temperature is much greater than the impact of pressure on the thermal expansion
coefficient α of this material. These results are in accordance with the results of the Debye
theory, which applies to many kinds of material.

The heat capacity at a constant pressure CP of CaSiO3 perovskite vary with temperature
T and pressure P as displayed in figure 7. The calculated value of CP at ambient conditions
is 84.29 J mol−1 K−1, compared to the experimental value of CP = 85.3 J mol−1 K−1 [49].
Figure 7 illustrates that the anharmonic effects are suppressed at high pressures and CP is very
close to a constant value at high pressures and temperatures.
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Figure 7. Temperature dependence of the heat capacity CP of CaSiO3 perovskite. The isobars at 0,
10, 30, 60, 100, and 150 GPa are represented by the solid lines from top to bottom. The experimental
value at zero pressure and 300 K is denoted by a solid square [49].

4. Conclusions

First-principles plane wave pseudopotential calculations are performed for the analysis of the
structural properties of CaSiO3 perovskite under high-pressure conditions. Our calculated
elastic moduli at pressures up to 200 GPa are in good agreement with the available experimental
data and the previous calculations at high pressures. The calculated elastic anisotropy is
consistent with the experimental observations and the previous calculations. Furthermore,
the value of Cauchy violation is found to be large and negative and to increase in magnitude
with increasing pressure. The thermodynamic properties of CaSiO3 perovskite are predicted
using the quasi-harmonic Debye model. We see that the predicted heat capacity and thermal
expansion coefficient α are in accordance with the observed values at ambient conditions and
the other calculations at high pressures and temperatures. The thermal expansion coefficient
α and heat capacity are shown to converge to a nearly constant value at high pressures and
temperatures.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant
No. 10674120, the Foundation of Laboratory for Shock Wave and Detonation Physics Research
of China Academy of Engineering Physics under Grant No. 914067120206ZS7502, the Natural
Science Foundation of Gansu Province of China under Grant No. 3ZS051-A25-027, the
Scientific Research Foundation of Education Bureau of Gansu Province of China under Grant
No. 0410-01 and the ‘Qing Lan’ Talent Engineering Funds by Lanzhou Jiaotong University
under Grant No. QL-06-22A.

References

[1] Fiquet G 2001 Z. Kristallogr. 216 248
[2] Irifune T 1994 Nature 370 131
[3] Ita J J and Stixrude L 1992 J. Geophys. Res. 97 6849

9

http://dx.doi.org/10.1524/zkri.216.5.248.20374
http://dx.doi.org/10.1038/370131a0


J. Phys.: Condens. Matter 19 (2007) 246103 Z J Liu et al

[4] Kung J, Angel R J and Ross N L 2001 Phys. Chem. Miner. 28 35
[5] Karki B B and Crain J 1998 Geophys. Res. Lett. 25 2741
[6] Shieh S R, Duffy T S and Shen G Y 2004 Phys. Earth Planet. Inter. 143 93
[7] Mao H K, Chen L C, Hemley R J, Jephcoat A P, Wu Y and Bassett W A 1989 J. Geophys. Res. 94 17889
[8] Wang Y, Weidner D J and Guyot F 1996 J. Geophys. Res. 101 661
[9] Hemley R J, Jackson M D and Gordon R G 1987 Phys. Chem. Minerals 14 2

[10] Sherman D M 1993 J. Geophys. Res. 98 19795
[11] Wentzcovitch R, Ross N L and Price G D 1995 Phys. Earth Planet. Inter. 90 101
[12] Warren M C, Ackland G J, Karki B B and Clark S J 1998 Mineral. Mag. 62 585
[13] Kurashina T, Hirose K, Ono S, Sata N and Ohishi Y 2004 Phys. Earth Planet. Inter. 145 67
[14] Chizmeshya A V G, Wolf G H and McMillan P F 1996 Geophys. Res. Lett. 23 2725
[15] Stixrude L, Cohen R E, Yu R and Krakauer H 1996 Am. Mineral. 81 1293
[16] Jung D Y and Oganov A R 2005 Phys. Chem. Minerals 32 146
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